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ABSTRACT
\

The nonlinear modification of the electron distribution function caused

by the interaction with a resonant electrostatic field is studied analytically

using a perturbation analysis. This interaction produces tail heating, and

for a range of parameter values, can form a bump in the distribution, which

leads to emission of secondary waves. These results are applied to the

ionosphere's F and upper E regions in the context of ionospheric modification

experiments using ground-based powerful HF transmitters. Analogies between

our results and experimental measurements are discussed. , [. -Is
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1. INTRODUCTION

The interaction of powerful high frequency (HF) electromagnetic waves

with ionospheric plasmas can lead to the generation of electrostatic plasma

waves through various processes, eog., linear mode conversion, direct

conversion, parametric instabilities, etc. These processes occur at a height

where the angular frequency of the HF wave wo nearly matches the local

electron plasma frequency wp. The relatively slow phase velocity of the

excited electrostatic modes allows the possibility of strong interactions with

ionospheric electrons. These interactions can result in significant modifi-

cations of the background electron distribution function. The signatures

of such interactions are often observed during ionospheric modification

experiments (see, for reference, volume 9, issue 11, of Radio Science (1974),

and volume 44, issue 12, of Journal of Atmospheric and Terrestrial Physics

(1982)]. For example, during HF heating experiments, fast electrons produce

enhanced airglow at 6300A and 5577A, caused by the excitation of atomic oxygen

lines [Sipler and Biondi, 1972; Haslett and Megill, 1974; Carleson, et al.,

19821. Non-ohmic heating of the ionosphere which is partially attributed to

tail particles produced during the Iheating has also been observed [Meltz,

et al., 1974; Mantas, et al., 1981]. The purpose of the present work is to

calculate the modification in the electron velocity distribution function

resulting from the resonant excitation of electrostatic oscillations in the

ionosphere. It is hoped that the analytic results may help illuminate some

of the various experimentally observed phenomena, and perhaps suggest new

experiments which would probe the nature of the electron acceleration

mechanisms.
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This study does not address the different mechanisms that can generate

plasma waves. Such studies are available in the literature. For example, the

generalized mode conversion problem is treated in detail by Mj~lhus [1983];

direct conversion is analyzed by Wong, et al., [1981]; and parametric

instabilities in the ionosphere are reviewed by Fejer [1979]. The present

work assumes a given spatial structure for the electric field near the plasma

resonance, and proceeds to calculate the resultant kinetic interactions. Two

typical resonant structures are considered: one corresponds to the convective

limitation of the plasma resonance (Airy pattern), and the other is

appropriate to a collisionally limited resonance (Lorentzian pattern).

Figure 1 illustrates the geometry of the model problem, and shows the

relevant scales. The localized electrostatic field Eg(z) is considered to be

parallel to the earth's magnetic field fo at z - 0. Its characteristic width

is Azi - Ln(kDLn)- 2/3 for the Airy pattern, or Azi - (Mtn) for the Lorentzian

pattern, where r - Ve/%, ve is the electron collision frequency, Ln the

density scalelength along Bo, and kD is the Debye wavenumber. Electrons

impinging upon the localized field from the high density side can be

accelerated as they pass through the interaction region Azi, hence, modifying

the distribution function downstream at z - zo. This modified distribution

changes slowly within a slowing down length L(u) for those electrons with

velocity u parallel to the magnetic field; beyond L(u), the distribution

relaxes to an appropriate equilibrium.

In this work, we analytically calculate the modified electron distribu-

tion existing in the range between zo and L(u) by using a perturbation

analysis correct to second order in the strength of the electric field. The

%ilk,
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general result we derive is applied to a specific bi-Maxwellian background

electron distribution, characteristic of an ionospheric F region. Parameters

of the background plasma are varied to assess the effect of different

ionospheric conditions.

An interesting feature found in the analysis of the Airy and Lorentzian

patterns is that both structures have a broadband, unidirectional Fourier

spectrum, with identical power spectra characterized by a collisionally

dependent exponential envelope. For electric field amplitudes above a certain

threshold, a bump can be formed in the tail of the velocity distribution

function downstream from the resonance layer. The region of positive slope in

the velocity distribution may trigger the growth of a broad spectrum of

sideband waves in the neighborhood of wo. The width of the sideband frequency

spectrum is determined by the electric field strength, its effective phase

velocity, and by the background plasma parameters. It is worth noting that

these sidebands are analogous to ones observed in the laboratory by Starke and

Malmberg [1978]. Another interesting result obtained from the calculation is

the observation of heating of particles with velocities of the order of, or

larger than, the characteristic phase velocity of the resonant field. These

tail electrons ultimately loose their energy to neutral particles and bulk

electrons by different collisional processes that occur in the ionosphere.

The observed airglow enhancement is but one of these processes. Through them

one can estimate the slowing down length for fast electrons.

The description and analysis of the model are presented in section 2.

Results obtained from the model are discussed in section 3, while conclusions

are given in section 4.
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2. MODEL

This analysis considers a nonuniform, weakly collisional (ve << wo),

magnetized plasma characteristic of the ionospheric F and upper E regions.

The resonantly excited electric fields are assumed to be primarily aligned

along the magnetic field ABo, i.e.,

E(r,t) z (EI(z)exp(-iwot) + c.c.] ; (1)

hence, the Boltzmann equation is solved by separating the total distribution

function f(r,v,t) into an unperturbed symmetric perpendicular distribution

Fo(vj) and a perturbed parallel (field aligned) distribution g(z,u,t),

f(r,v,t) F Fo(vj)g(z,u,t), (2)

where v - V1 + zu, and lvii " vj.

2.1 Perturbation Analysis

We proceed with a perturbation calculation correct to order IEl2 .

Equation (2) is therefore expanded according to

f(r,v,t) - f0 (,v) + f1 (r,v,t) + f2(rv,t) + (3)

The spatially dependent equilibrium distribution is

fo(rv) - Fo(v±)go uno(Z),

no(z) - No(1 - z/Ln), (4)

where a linear profile is assumed around the region of interest, and No is the

density at the plasma resonance (z - 0). The normalization conditions for
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the zero order distribution are fdu go(u) - I and fd2vFfo(V') 1. Symmetry

in the perpendicular direction also implies that fd v VFo(vL) 0 0. The first

order perturbed distribution oscillating at frequency wo is

f1 (r,v,t) - F0 (vI)[gl(z,u)exp(-iw0t) + c.c.]

and represents the linear response of the plasma. The second order perturbed

distribution function contains both a time 
independent term, corresponding to

the modification of the equilibrium by the resonant field, and a second

harmonic response

f2(r,v,t) - F0 (v1 ) {5g 2 (z,u) + [g2 (z,u)exp(-i2wot) + c.c.]}.

However, for the purpose of the present study, the second harmonic term

. will not be considered and is subsequently neglected.

The Boltzmann equation is written as

v IxzB o 
af

+ u E(z)exp(-iot) + - ] V-} Fo(v )g(z,u,t) - & fcol1  (

The unperturbed equilibrium is determined'by

n W(z3f
u 3z 90 0V1) -t coll,o

which states that the plasma density gradient is determined by a balance

between the sources and the transport mechanisms, both plasma and atomic,

existing in the ionosphere (i.e., elastic and inelastic collisions, ioniza-

tion, and recombination processes) and contained in the term (t)coll o.f

Since the present study aims to resolve the acceleration mechanisms in the

neighborhood of plasma resonance, a linear approximation (4) for the

I W
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unperturbed density profile is made, with the scalelength given by

3no-
Ln " (1 -- (7)

0

The first order parallel distribution function is obtained from (5) by

integrating over perpendicular velocities

g1 (z,u) en (z)E 1(z) ago(u)

z iig 1(z'u) mu u (8)

- % + iv(u)
where K - , and the first order linearized contribution of theu

right-hand side term in (5) is approximated by -v(u)g (z,u),

v(u) - fd 2vjv(v)Fo(vj) is the slowing down rate for electrons with velocity

u averaged over perpendicular velocities (not to be confused with the average

collision frequency for bulk electrons ye). Equation (8) is a linear

differential equation in z which is integrated along its characteristics.

Separating right-going [g+ Cz,u)] from left-going [g, (z,u)] particles:

± ± (u) . dk i(k)exp[i(kz - w t)]g t (z,u,t) e=J0 f
mu au 2i (k - ,c)-4 (9)

S0 [n(z) (k - )n

n

where E(k) is the Fourier transform of the field E;(z), and in general

gn(u) -n g(u)O(u) + g n(u)O(-u), 6(u) being the Heaviside unit step function.

tK'
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Carrying out the analysis to second order in the resonant field, the time

averaged component of (5) integrated over perpendicular velocities is written

as:

g[E(z'u) * 3g1 (zu)
u g2 (z 'u) - m [ u + EI(z) u ] =

(10)
2 af

fd vl < T oi, >

. .

where the time-averaged second order distribution is <f2 (z,v,t)>

6g2(z u)F(v.), and <&tf)coll2> represents the time-averaged second order

collisional processes. The interaction between the particles and the resonant

electric field E1 (z) occurs within a spatially localized region Azi (see

Figure 1) that is assumed to be much smaller than the slowing down length

L(u) - u/v(u) for velocities of interest. In the ionosphere's F region and

the upper E region, this assumption is well justified. However, for lower

altitudes, the stopping distance decreases with increasing neutral density and

this assumption can breakdown. It is also understood that the density

scalele-Agth is also large, hence we write

"!L Ln', L(u) >> Jazil (I

For distances from the resonant layer z < L(u), 6g2 (zu) can be obtained by

neglecting the effect of collisions, i.e., the right-hand side of (10), and we

can write:

* W 2 (g)u+

(z. ) -) a I- J d k E* (k ) r E (k ') i k,i i 6g: (z,u)" P f dk -- dk' exp [iz(k- k)]

2  16ir3mu au U au - -k*) -4 (k'-k)

i N/n (z) iN n o(z) (12)
.. + (k_,*)L n (k'-k)L ] + c.c.}.

n %
9% . • . . . - , , . . . , . - . -. . . . . , . , . , . , . , . . . , . .. . . . . . -,. . . . - . . . .
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In deriving (12), we have made the approximation that L(u) + T - for 6g2-

This approximation is in accordance with (11), which expresses the localized

nature of Ei(z). Furthermore, since Ln >> Izij, the last two terms in (12)

make a small contribution, and can thus be neglected.

Up to this point, no specific form has been assumed for either g (u)

or E(k) except, of course, that they must be physical (i.e., that they are

well behaved at infinity). More specifically, we have stated that Ej(z) is a

spatially localized field near the plasma resonance region, which implies that

its Fourier spectrum E(k) is broadband. This being the case, if we further

require that the spectral amplitude IE(k)I of the electric field is an entire

function (i.e., does not have singularities in the finite k-plane) then, for

this second order analysis, one can average the effect of the phases by

calculating Sg (z,u) in the asymptotic region where z > zo >> Azi (see Figure
2

1). Equation (12) reduces to a single integral

2 ag (u)- 2

ag (z,u) - 1- [1 fdk IE(k)I + c.c]. (13)2 1wm3u u u i(k-c)

Using (12) or (13), the total time-averaged electron distribution correct

to second order is:

< f-(z,v,t) > [n(Z)go(u) + 6g (z,u)] F (vi). (14)

2.2 Electrostatic Field Structure

To give a concrete example of the changes that occur in the electron

distribution, we consider two field patterns, the Airy function and theF Lorentzian. These two field structures are characteristic of resonantly

K 2'
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excited plasmas. The Airy structure arises when linear mode conversion limits

the resonance amplitude excited by an incident electromagnetic wave propaga-

ting into a plasma with a density gradient. The Lorentzian ;attern replaces

, the Airy pattern whenever the mean free path of the thermal electrons is smal-

ler than the characteristic Airy scalelength, i.e., (P /v ) < L (k L )- 2/3, -ve e n D n ,e

* being the electron thermal velocity.

The electric field for an electrostatic plasma wave, propagating along

the magnetic field in the positive z direction is given by [Morales and Lee,

1974]
' 2/3

EA(z) - -i'n'Eo(kDLn) [Ai(-C - ir') - iGi(-C - ir')] , (15)

2where 2/ ( 1 z/Ln  r' = (k) 3r, r - v /w Ai and Gi are solutionsheLn2/ n Ln)2e o,

to Airy's equation given in Abramowitz and Stegun [1965], and Eo is a field

amplitude that is related by a mode conversion efficiency to the incident

electromagnetic wave power. In the limit where collisions dominate, we obtain

the Lorentzian profile

EL
E (z) - o n (16)z + i rLn

It is worth noting that for z/Ln < r, (15) is approximated to leading order by

.,W (16). This effect is illustrated in Figure 2a, which depicts the magnitudes

of both the Airy and Lorentzian patterns for two values of the damping factor,

r, - 0.2 and 0.8. Figure 2b displays the real parts of both patterns for

r, - 0.4. The Lorentzian consists mainly of a single wavelength, that is

almost in phase with the Airy pattern near the origin, and travelling down the

density gradient. This feature is also found by taking the Fourier transform

of both field structures:

"p.
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A-on(kL +.! } , (17)

E A(k) - 2 rE oL n (k)exp 0 3E~-- (kL 2)(7

EL(k) - 21rE L 8(k)exp -k(18)
o- n ko 2 '

where again O(k) is the Heaviside unit step function, EA(k) is the Fourier

transform of the Airy pattern of (15) and EL(k) that of the Lorentzian of

(16); the characteristic wavenumber ko - wo/a - (rLn)-', where a is the

effective phase velocity of the Lorentzian and/or the Airy envelope. The

derivations of (17) and (18) are shown in the Appendix.

The Fourier transforms of (17) and (18) have common features. They are

both broadband and unidirectional. In fact, they only differ by a highly

oscillatory phase term in the Airy spectrum. The power spectra for the Airy

and the Lorentzian are therefore identical. Accordingly, in the limit of

second order analysis, a particle passing through either field pattern emerges

downstream at zo>> Azi, away from the interaction region having, on the

average, experienced identical effects. The magnitude of the electric field

Fourier spectrum is plotted in Figure 3 as a function of both wavenumber k and

parallel velocity u, where k - wo/u. The resonant field k-components interact

with the background electrons and accelerate them. Components varying from

zero up to values on the order of ko - (rLn)-l < kD efficiently interact with

the background particles. As k increases, the interaction with the resonant

electric field structure decreases until k + kD, where Landau damping destroys

the wave completely. In terms of the velocity space interaction, this

*i translates as acceleration of particles mainly in the tail by an electric

field of constant magnitude produced by the plateau that exists in the
=I

**1. - "." , , - "- "', ?'"" -" -,, - :" "' ." ' ' - " -.. "



exponential behavior of the spectrum from ve < u - a up to u * +mo For

velocities u < a, closer to the bulk of the velocity distribution, the field

has negligible k-components and particle acceleration is small. As u Ve,

Landau damping completely eliminates any k-components.

Substituting for either of the field patterns in (13) gives

W2 2( La +

6g +(z,u) - CJP (o n) o {.a-2a/u [WCOS2. ( u.)
2mu 3u uu

(19)

+ Ei (2a/u)sin r2vlu))j]l}
LI

for u > 0, and

w 2 (z) (E L I 3g (u) 2v(u),. ,g2 (2,u) " mu u (2a/juI)sin i-- (20)
~ -o2&j

for u < 0; Ei and El are exponential integral functions defined in Abramowitz

and Stegun [1965]. For the case v(u) + 0, i.e., negligible slowing down of

fast particles, then Sg2 + 0 and

iw2 (z)(E 2
2mua

u nLn) L [1. e-2a/u . (21)
g!62 (z'u) = 2mu u quT-(1

No wave particle resonances occur for particles moving up the geomagnetic

field (i.e., in the negative z direction) due to the unidirectional nature of

the resonant field wavenumber spectrum. If the resonant field spectrum had k

components in the direction opposite to the geomagnetic field (negative z

direction), then particles with u < 0 would be accelerated yielding a non zero

ag2 "
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2.3 Zero Order Distribution

SA self-consistent calculation of the zero order distribution function

fo (z,v) requires the solution of equation (6). We shall not attempt this,

however, as it is quite difficult for F region conditions and contributes

little to the features we wish to emphasize. Instead, we consider a model

characteristic of an equilibrium ionosphere that can simulate different

regimes of the ionosphere by changing the value of the parameters. Through

this approach, we exhibit the main features contained in the present

analysis.

A bi-Maxwellian models the zero order electron distribution and is

expressed as

eU 2/ e2 A U2/vf2

g+-(u) e /- + /7 , (22)

e f

where A is the fractional density of the energetic tail, usually of the order

of a few percent, ve is the thermal velocity of the bulk plasma, and vf is the

characteristic velocity of the tail. A, ye, and vf are free parameters that

model the various ionospheric conditions. Using (21) and (22), the resulting

total electron distribution function of (14) (accurate to second order) is

Sn (z)(-) 2 2 n 0(z)A 2 2
g(z,u) 0 e -

t ". e

2 (23)E 2 avf
+ -2a/u [1 - ],11 2 •

where E. f mvf)/(reLn) is a normalizing field that scales as the average

tail energy per unit charge over the density scalelength. If there is no

initial tail, i.e., only a single Maxwellian background, then A I 1 and

U.9 Z . - *'-



13

Vf - ve. Figure 4 shows a plot of (23) for - 0.01, vf - lOve, and a

resonant field having an effective phase velocity a - 20v. For E0 M 3Es,

particles diffuse toward higher velocities causing a swelling of the tail.

This tail heating is produced by the power spectrum of the applied electric

field E(k - Wo/u) displayed in Figure 3. The heating is most significant for

large velocities where the spectral density is largest and nearly constant.

Equation (23) shows that the exponentially decaying Gaussian tail of the

background is enhanced and spread out by the perturbation term. The larger

the amplitude of the applied field, the larger the diffusion toward the tail.

However, since there are more particles at lower velocities, one can see that

because the magnitude of E(k) increases with velocity (Figure 3), there may be

a velocity bin where more particles diffuse into it from the bulk (and more

populated) side than there are particles leaving that region toward higher

velocities. This effect may produce a localized swelling of the tail that

would ultimately cause a bump in the distribution for large enough fields.

The region where this process would occur is, of course, a function of both vf

and a, i.e., the tail and the resonant field's effective phase velocities,

respectively. The condition for bump production is analyzed in the following

section.

2.4 Threshold for Bump Production

We now investigate the condition for producing a region of positive slope
.' ~~~~~g(z~u). ,oe s aif hin the distribution function of (23). For au 0, one must satisfy the

*condition
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2__ exp(2a/u) (24)

Es2 -- 3av fav 2

2u 5 - 3

Again, for the case of a single Maxwellian plasma, a similar expression is

obtained with vf - ve. Positive slopes will occur on the distribution only in

the region where the denominator of (24) is positive, i.e., whenever

(3& 1/2 3a1/2

u 2u < (u/vfJ) < [. + 2 3" (25)

It should be emphasized that although the positive slope condition of

(24) is calculated for the specific spectra of the Airy and the Lorentzian

field structures, this method is applicable in general to any spectrum

satisfying the conditions leading to (13). In this case, the condition of

(24) for a positive slope in the tail distribution is generalized to

2 2
A__ (26)

2- 4 2 2vf vf vf
En .--- G(u) +-- (1 + v) G'(u) - G(u)]

4u u 4u

where

G(U) -I [ Ak_ ti(k)12

A - 2wi (k- i)

1 2

n =ewII A is the amplitude of the applied field, and w its characteristic width. It

can be shown that for a Lorentzian or an Airy pattern (26) reduces to (24).

**~ NO
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2.5 Sideband Emissions

2.5.1 Threshold for Growth

The existence of a positive slope in the distribution suggests that

plasma waves with phase velocities resonant with particles in the positive

slope region can become unstable. These unstable plasma waves form broad

sidebands in the neighborhood of the main frequency wo. For sideband

amplification, the field Eo must be large enough not only to produce a

positive slope in the distribution, but also to overcome collisional and

Landau damping. This condition is written as

2
Y W ru 3g(u)

2 2 au r > o (27)

0 2 ( + 6 /u )  W /Ik

where the sideband frequency is ws - wr + iy, and we assume y << wr. Equation

(27) is accurate to order (v/u). From (23), the condition of (27) is

rewritten as:

r(w ) (vf/U)3 ( 2 + 6v2/u 2

(2 exp(2a/u) (I + - ep(u /vf)]

02o> (28)

E2 
3 avf avf27 {- -(1 -3)
2u5  u

where again in the case of a single Maxwellian plasma A + I and vf = ve.

Comparing (28) to (24), one concludes that the addition of the term

proportional to r in the former increases the wave growth threshold over the

threshold for positive slope. In practice, however, the term containing r in

(28) is usually small compared to unity in the square brackets.

V . o .- . .- -. j . .- ,'.% ,=. ' , , .,. .. . J.,.,. . .- -
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Given a certain field E. above the instability threshold of (28), we

expect growth of sideband waves with growth rates given by (27). The growth

rate is largest for the sideband whose phase velocity matches the largest

positive slope, and decreases away from this value for both larger and smaller

velocities up to frequencies with phase velocities which correspond to

negative slope on the distribution.

2.5.2. Sideband Frequency Spectrum

The frequencies of the growing sidebands can be determined in the case of

a homogeneous medium, from the dispersion relation. For phase velocities

larger than the background thermal velocity, the dispersion relation for

Bohm-Gross waves is approximately

2 2 -2 2
w /0 - 3v /u ), (29)s--p •

where it is assumed that ws is real. Velocities in the positive slope region

usually satisfy the condition u a, while the Airy electric field structure

at plasma resonance satisfies the relation

2 2 -2 2
- w /(1 - 3v /a). (30)o- p •

With u ! a, equations (29) and (30) indicate that sidebands should be radiated

at frequencies s w wo, i.e., larger than the initial resonant frequency.

Note that for the Lorentzian (cold plasma), the phase velocity is infinite at

resonance, so that the preceeding statement is still correct. The wavenumbers

corresponding to these waves are obtained by the condition k. ws/u.

;A ~'f*
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For the case of an inhomogeneous plasma, recall that the distribution

given in (23) is valid in the spatial range zo < z < L(u), where zo is an

r arbitrarily chosen location satisfying the condition z0 >> AZj (Figure 1).

Equation (29) is therefore rewritten using the position-dependent plasma

frequency:

2 2
w (z) - wi (o) C I - z/Ln), (31)p p

where wp(o) - wp. Therefore, in the inhomogeneous plasma, although the

sideband waves have the same phase velocities as in the homogeneous case,

i.e., in the range u <_ a, their frequencies are smaller because wp(z) < wp(O).

As a result, the spectrum of the sidebands is shifted to lower frequencies

1. than for a comparable homogeneous case, as is clear from (29).

The sideband frequency spectrum is therefore determined by two factors,

namely, that the bump occurs at velocities u ( a, and the plasma frequency

decreases away from the resonance region. Furthermore, since the perturbed

distribution is valid at any z satisfying the condition zo < z < L(u), side-

bands should be amplified for all z's in this range at frequencies satisfying

the local dispersion relation. Backscattered Thomson radar returns would

therefore see sidebands caused by the integrated effect from the different

*heights. The recorded frequency spectrum would manifest itself as a bump-like

distribution of broadband frequencies that spread around the initial frequency

wo, depending on the prevailing ionospheric and resonant field parameters

(ve, vf, at zo , Ln, . . ..

We have given a simple argument to the effect of the inhomogeneity on the

generated sidebands. However, the instability should be treated using a fully

spatially dependent analysis. Rather than using an initial value treatment of
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the instability, a boundary value approach would be more appropriate, as the

instability is convective rather than absolute. One should note that an exact

comparison between our theory and the experimental results of Starke and

Malmberg [1978] is only valid in this limit. However, even with this simple

approach, one can see the similarities between the broad sidebands they

measure and the ones we calculate. One could also note a similarity between

the sidebands of the present analysis and the "broad bump" in the plasma line

spectrum observed by Thomson radar returns [Showen and Kim, 19781 during

ionospheric heating experiments. In this experiment, the wavelength of the

Thomson radar is fixed, therefore, the broad bump is made of only those

sidebands that match with the radar wavenumber. The recent rocket experiment

of Rose, et al. (19851, also shows evidence of broad sideband Langmuir waves

around the heater frequency wo measured on the upleg of the rocket trajectory,

below the reflection layer.

4

-, .-- -- : C$*~~N
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3. DISCUSSION

The second order analysis presented in this work has shown that the

nonlinear modification of the background distribution function by a resonant

electrostatic field may cause tail heating, bump production, and broad

sideband emissions. The power levels necessary to trigger these effects in

the ionosphere's E and F regions are illustrated by the following example.

Assuming the same background conditions as for Figure 4, i.e., A - 0.01,

' vf - l0Ve, a - 20 ve, ve - 0.15 eV, and r - i0-5. The resulting distribution

is plotted in Figure 5a for three cases; namely, Eo - 0, 3s, and 6Es, where

Es -
3.39/Ln (in SI units) for the preceeding parameters. The threshold

conditions for both positive slope [Equation (24)] and growth [Equation (28)]

are plotted in Figure 5b and appear as one curve since the two plots are

almost superimposed, showing that for F region parameters, the threshold for

growth is not much larger than that for positive slope. Outside the region

contained within the dotted lines, the condition of (25) is not satisfied and

the denominators of both (24) and (28) become negative precluding the

formation of a positive slope in these regions. The minimum point on the

curve of 5b is determined numerically because the functions involved are

transcendental. In this example, one finds Eo,thr - 4.83Es . Therefore, for

V" the plotted value of Eo - 6E., one is well above threshold, and a bump does

develop. The growth rate corresponding to this value of Eo and obtained from

(27) is plotted in figure 5c, where it is clear that growth (i.e., y > 0)

occurs only in the region where the distribution has a positive slope, and

that it maximizes at the velocity where the slope is maximum in the

distribution. Velocities where y < 0, correspond to damped waves. Assuming

wo to be of the order of few MHz, which is usually the case for overdense

heating of both E and F regions in the ionosphere, the rise time for the



20

instability is only a few hundred microseconds. Frequencies at the edges of

.*" the sideband grow at slower rates. In Figure 5d, curve a shows the width Aws

of the sidebands spectrum produced for a homogeneous medium using (29), z - 0.

One may extend the validity of curve a to an inhomogeneous medium with a very

large density scalelength such that z/Ln << 1. Curve b shows the other limit

case wherein z/Ln - 0.1, a finite value which makes the condition z < L(u)

just valid for the ionospheric plasma. It should be kept in mind that at each

value of z, such that Azi << z < L(u), the distribution function with the bump

exists and sidebands are being produced. This means that curves a and b in

Figure 5d should not be viewed as two discrete cases, but rather as two bounds

for the possible spread of sidebands (dws) that this particular example would

generate.

To justify the value of z used to generate curve b of Figure 5d in terms

of slowing down length, we mention that for energies U(u) of the electrons

being considered, which vary usually form a few to a few hundred electron

volts, the slowing down length L(u), evaluated using the continuous slowing

down approximation where L(u) - U/(- dU/dz), has a minimum value that varies

from a few kilometers near the ionosphere's upper E region to over a few

hundred kilometers in the F region. This result is displayed in Figure 6

which incorporates all the important slowing down processes present in the

ionosphere's upper E and F regions. Density scalelengths, on the other hand,

vary from a few kilometers in the E region to one hundred kilometer in the F

region. Therefore, a value of z - 0.1 Ln < L(u) is reasonable for an upper

range of validity of the distribution with the bump.

Since the ionosphere is a highly variable medium, we present in Table I

*: *, the different scalelength dependent parameters. For the resonant field's

LJq %-
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effective phase velocity we assume, a - YeLn - 20ve, there exists different

combinations for the product (VeLn). Since both the ionospheric density

scalelength and the bulk electron collision rate depend upon altitude and

local time, we compute the threshold parameters for different combinations of

Ve and Ln. The quantities calculated in Table 1 use the same parameters that

are used in generating the previous figures. Typical values of Ve and Ln in

Nthe ionosphere's upper E and F regions have a product that varies around the

value chosen in the present example.

For a given threshold field (Eo,thr), there exists a corresponding

energy flux density for the electrostatic wave Pes that is related to power

delivered by the high frequency electromagnetic waves at the reflection layer

PHF" In Table 1, PHF is estimated assuming a mode conversion efficiency,

nl = Pes/PHF = 15%. That is, PHF is the necessary power density needed at the

reflection layer (usually anywhere between 100 Km and 350 Km altitude) in

order to produce an electrostatic field just above the threshold value. The

values displayed in Table 1 are to be compared with vacuum power densities of

0.50 mW/m 2 delivered at 250 Km altitude by the Tromso Heating facility

[Stubbe, et al., 1982], 0.15 mW/ 2 by the Alaska HIPAS facility [Wong, et al.,

19831, and 0.05 mW/m 2 by the Arecibo heater [Mantas, et al., 1981]. For the

example we are presenting, as well as most other cases, the thresholds for

instability are within these values.

It is also of interest to compare the thresholds for bump instability

that we have calculated with those necessary to produce parametric instabili-

ties, another second order nonlinear process commonly encountered during

ionospheric modification experiments. The two mechanisms pertinent to this

.$
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situation would be the decay instability with the electromagnetic pump

decaying near its cutoff into a plasma wave and an ion acoustic wave, and the

oscillating two stream instability involving a purely growing ion mode. The

threshold estimated for the decay instability in the ionosphere [Fejer, 1979]

corresponds to an HF pump amplitude of 0.25 V/m or a vacuum HF power

PHF - 180W/m2 for F region parameters. For the oscillating two stream

instability, the threshold is even higher. This implies that the sideband

instability thresholds calculated are less than, and at most on the order of,

the smallest parametric instability threshold, namely the decay process.

i.t
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4. CONCLUSIONS

The second order analysis presented has shown the following major effects

in response to the excitation of a spatially localized electric field

parallel to the earth's magnetic field.

1) For the two field structures typical" of a plasma resonance, the

wavenumber spectrum is broadband and unidirectional. The power

spectra of both the Airy and the Lorentzian structures are identi-

cal, i.e., in the second order time averaged limit, the asymptotic

modifications in the distribution function are identical. However,

one should note that the Airy pattern has, in addition, oscillating

structures in it. Its equivalence to the Lorentzian is therefore

limited to situations where its damped envelope is the main

contribution to the interaction, which is the case in the present

second order analysis. Under different conditions, the oscillating

part of the Airy structure could be responbble for other types of

interactions not considered here (e.g., particle trapping).

2) Particle acceleration caused by direct plasma resonance electric

fields (with unidirectional k-spectrum) occurs only for particles

impinging from high altitude as is clearly evident from (21).

No up going particles are resonantly accelerated by such a field.

This result implies that any experimental evidence for fast

particle acceleration upstream from the resonance layer indicates

either strong pitch angle scattering or the existence of electric

A fields not produced by direct plasma resonance but rather by some

other mechanism, like parametric instabilities.

9'°.
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3) The tail of the electron distribution is heated producing an

enhanced fast electron flux in the range from a few eV to few

hundred eV. The low energy part of this tail could be responsible

for the observation of enhanced airglow at 63001 and 55771

[Sipler and Biondi, 19721, and may account for the high energy

particles that are also observed [Carleson, Wickwar, and Mantas,

1982].

4) Present day ionospheric heating experiments appear to deliver

powers that are large enough to overcome the threshold for bump

formation. Therefore, a bump is expected to develop in the tail of

the distribution function. Also, it is found that for the

ionosphere, this threshold is quite close to the wave instability

threshold, so that enhanced noise levels should also occur.

5) Broad sidebands are generated in the F region by the bump instabi-

lity, their growth time is of the order of 10-1 millisecond. They

are produced at different heights downstream from the interaction

region, up to the slowing down length or nonlinear saturation

length, whichever is shortest. For a distant observer, the net

broad sideband spectrum consists of the integrated effect from all

these heights. Experiments measuring the plasma line spectrum

using Thomson radar backscattering from the ionosphere during HF

heating [Kantor, 1974; Showen and Kim, 1978], show evidence, under

some conditions, of a "broad bump" in the spectrum. In addition,

the broad spectrum of plasma waves around the HF heater frequency

measured in the HERO rocket flights [Rose, et al., 19851, could be

another example of the phenomena considered by the present study.

,. -
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In the laboratory, the results of Starke and Malmberg [1978] have

simularities to ours, both in the broad sideband spectrum they find

and in the quasilinear theory they invoke. However, since the

spatial dependence of the growing sidebands is not self-consistently

included in our analysis, a direct comparison is not possible at

this point.
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APPENDIX: FOURIER TRANSFORMS OF THE AIRY PATTERN AND THE LORENTZIAN

3i We derive here equations (17) and (18). The Fourier transform is defined

as:

(k)- dz E1 (z) exp(-ikz) (Al)

where E1 (z) is defined by (15) for the Airy pattern and (16) for the

Lorentzian.

One may write (15) as [Abramowitz and Stegun, 19651

fdi t3 z__ A-_ )t+-](2

E,(z) - Eo(kL) 2 13 f dt exp {i [ -+ (kDLn) 21 3 (- L- ir) t +2

Substituting in (Al) and integrating over all space

2A(k) - 2wEo(kDLn)21 3 . dt exp i - (kDL,) 21 3 rt + 2]}-6[k - at]

1 2EoLn exp[-k ,k 0 - iLT= + w)], k > o (A3)

0 ,k< o (A4)

where ko - (rLn)- 4 , cg- (kDLn)2/3/Ln, and kD is the Deybe wavenumber.

Equations (A3) and (A4) are identical to (17).

For the Lorentzian case, (Al) is rewritten as

E L

L(k) 'fd o L n exp(-ikz)S - z + irL n

- 2" EoL n exp(-k/ko - iw/2), k > 0 (A5)

0 ,k< 0 (Ab)

"'."."'.'" . " '." ," - -" " -" '" " , ,' .' .' .' .' .' "- "-,' '- - ", "-"","","" ""-' ," ." ." '."" "% "" "" ' " "" '" " "" -" ,.'' "" - ", . "," ," .-41'
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-where the integration is carried out in the complex z plane closing the

contour in the lower half-plane for k > 0 (encircling the pole at -irtn), and

in the upper half-plane for k < 0 (where no poles are enclosed). Again,

equations (A) and (A6) are identical to (18).

I..
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FIGURE CAPTIONS

Figure 1. Schematic diagram illustrating the geometry of the problem.

Electrons from the high density side (on the left) pass through

the localized interaction region at plasma resonance (z - 0),

having a characteristic width Azi . They emerge accelerated in the

region zo z << L(u) forming an enhanced tail and, above a

threshold level, a bump in the distribution. The bump eventually

relaxes to the equilibrium background distribution (on the far

right) after a distance longer than a slowing down length L(u).

Figure 2. Spatial dependence of resonant parallel electric fields for the

Airy (continuous lines) and the Lorentzian (dashed lines) patterns

for different damping values: (a) Magnitudes for r' - 0.2 and 0.8;

(b) Real parts for r' - 0.4. Note the wavelike structure of the

Lorentzian in the neighborhood of the origin.

Figure 3. Dual plot of the magnitude of the Fourier transformed field (for

either the Airy or the Lorentzian pattern) versus wavenumber k

(upper scale and dashed curve), and versus velocity u - wo/k (lower

scale and continuous curve). Normalization is such that

ko - wo/a - (MLn)-1 , a is the effective phase velocity of the

resonant field.

Figure 4. Modification in electron velocity distribution obtained from

equation (22) for E0 
= 3E., a - 2vf - 20 e, and A - 1%.

Unperturbed background distribution (Eo 
= 0) is plotted for

comparison.

Figure 5. Production of a bump in the distribution function and associated

" -. ,' " ?? .".? '"i ? ", ' '£" '::", '' / ;'r: /# ?' " # " ' ; " %
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sideband instability: (a) the distribution function with the tail

magnified (scale to the right) for a - 2vf - 20re, Ve 0.15 eV,

A - 1%, wo/2w - 5 MHz, r - 10- 5, and different values of Eo; (b)

threshold curves for bump formation and instability generation

(both curves superimposed); (c) temporal growth rates for the

unstable sidebands (y > 0) generated on the positive slope region

of the bump for E0 a 6Es; (d) frequency range Aws corresponding to

sidebands generated locally in a slowly varying medium for curve

a: z - 0, and curve b: z - O.Lne A distant observer downstream

from the resonance region may sample sidebands within a frequency

range 6 w.

Figure 6. Energy dependence of slowing down length L(u) for fast electrons in

the upper E region (at 150 Km altitude) and the F region (at 300

Km altitude). Estimates are based on a model incorporating the

most dominant slowing down mechanisms of the ionosphere: impact

excitations, ionizations, recombinations, electron-electron

collisions, . . . (see, for example, Stammes and Rees (1983) and

the references therein]. The background ionosphere used is the one

given by Shoucri, Morales, and Maggs (1984].

.
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k TABLE 1. Electric Field and Power Densities Thresholds for Different

Ionospheric Parameters*

I Ln(Km) 5 10 20 50

Ve(s- 1) I 920 I 460 230 I 92

Eothr(mV.m-1l) 3.27 1.64 0.82 0.33

Pes( UW'm- 2 ) 23.6 11.8 5.89 2.36

HF( MW.m- 2) 157 78.7 39.3 15.7

*For a - 20ve - VeLn, various possible combinations of ionospheric

density scalelengths Ln , and bulk electron collisions ve yield:

threshold field of (23) for sideband instability Eo,thr; threshold

energy flux density in the electrostatic plasma wave Pes; and

corresponding threshold vacuum HF power at the reflection layer PHF

assuming a mode conversion efficiency of n Pes/PHF = 0.15.
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